线性代数:线性方程
09 May 2017The review of the key ideas are from chapter 2 of Introduction to Linear Algebra, Book of Gilbert Strang, editon 4th.
- Vectors and linear equations
- The idea of elimination
- Elimination using Matrices
- Rules for matrix operations
- Inverse Matrices
- Elimination = Factorization:A=LU
- Transposes and Permutations
1.Vectors and linear equations
- The basic operations on vectors are multiplication \(cv\) and vector addition \(v+w\).
- Together those operations give linear combinations \(cv + dw\).
- Matrix-vector multiplication \(Ax\) can be computed by dot products, a row at a time. But \(Ax\) should be understood as a combination of the columns of \(A\).
- Column picture: \(Ax=b\) asks for a combination of columns to produce \(b\).
- Row picture: Each equation in \(Ax = b\) gives a line (\(n=2\)) or a plane(\(n=3\)) or a “hyperplane”(\(n>3\)). They intersect at the solution or solutions, if any.
2.The idea of elimination
我仍然记得大学时学习线性代数, 课本是直接从 Gaussian elimination 讲起的.
Pivot = first nonzero in the row that does the elimination
Multiplier = (entry to eliminate) divide by (pivot)
Zero is never allowed as a pivot!
Failure: for \(n\) equations we do not get \(n\) pivots
Elimination leads to an equation \(0\neq0\)(no solution) or \(0=0\)(many solutions)
Success comes with \(n\) pivots. But we may have to exchange the \(n\) equations.
- A linear system (\(Ax=b\)) becomes upper triangular (\(Ux=c\)) after elimination.
- We subtract \(l_{ij}\) times equation \(j\) from equation \(i\), to make the (\((i, j)\)) entry zero.
- The multiplier is \(l_{ij} = \frac{entry\ to\ eliminate\ in\ row\ i}{pivot\ in\ row\ j}\). Pivots can not be zero!
- A zero in the pivot position can be repaired if there is a nonzero below it.
- The upper triangular system is solved by back substitution (starting at the bottom).
- When breakdown is permanent, the system has no solution or infinitely many.
3.Elimination using Matrices
上面的消元是按着步骤一步步执行下去的, 消元最后的结果是 1)有唯一解, 2)无数解, 3)无解. 我们也可以使用矩阵来进行消元.
Identity matrix: 单位矩阵\(I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix}\)
Elimination matrix or elementary matrix: 消元矩阵 \(E_{31}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\-l & 0 & 1 \end{bmatrix}\). 我们可以用消元矩阵左乘矩阵\(A\), 将矩阵\(A\)中的第3行第1列的元素消为0.
矩阵相乘: \(AB = A \begin{bmatrix} b_1 & b_2 & b_3\end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & Ab_3\end{bmatrix}\).
Exchange matrix(Permutation matrix) 置换矩阵 \(P_{23}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}\), exchanges row 2 with row 3.(左乘情况). 其他置换, 类似.
- 从 row-pictures 来理解线性方程组 \(Ax=b\). 其中: \(Ax\) is a combination of the columns of A. 矩阵\(A\)的第i行写成列矩阵形式: \([a_{i1}, a_{i2}, \cdots , a_{in}]\), \(x^T=[x_1, x_2, \cdots, x_n]\). 那么\(Ax\)中的任意一个元素可表示为: \(a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n, == \sum_{j=1}^{n}a_{ij}x_j\).
- Identity matrix = \(I\), elimination matrix = \(E_{ij}\) using \(l_{ij}\), exchange matrix = \(P_{ij}\).
- Multiplying \(Ax=b\) by \(E_{21}\) subtracts a multiple \(l_{21}\) of equation 1 from equation 2. The number \(-l{21}\) is the \((2,1)\) entry of the elimination matrix \(E_{21}\).
- For the augmented matrix \(\begin{bmatrix} A & b\end{bmatrix}\), the elimination step gives \(\begin{bmatrix} E_{21}A & E_{21}b \end{bmatrix}\).
- When \(A\) multiplies any matrix \(B\), it multiplies each column of \(B\) separately.(可以将矩阵\(B\)看作为一个个列向量组成的矩阵, 这样就类似\(Ax\).)
4.Rules for matrix operations
- The \((i,j)\) entry of \(AB\) is (row i of \(A\))·(column j of \(B\)).
- An \(m \cdot n\) matrix times an \(n \cdot p\) matrix uses \(mnp\) separate multiplication.
- \(A(BC) = (AB)C\)(surprisingly important).
- \(AB\) is also the sum of these matrices: (column \(j of A\)) times (row \(j of B\)).
- Block multiplication is allowed when the block shapes match correctly.
- Block elimination produces the Schur complement \(D - CA^{-1}B\).
在矩阵乘以向量的基础之上理解矩阵乘法就简单咯.
5.Inverse Matrices
- The inverse matrix gives \(AA^{-1}=I\) and \(A^{-1}A=I\).
- \(A\)is inversible if and only if it has n pivots(row exchanges allowed).
- If \(Ax=0\) for a nonzero vector \(x\), then \(A\) has no inverse.
- The inverse of \(AB\) is the reverse product \(B^{-1}A^{-1}\). And \((ABC)^{-1} = C^{-1}B^{-1}A^{-1}\).
- The Gauss-Jordan method solves \(AA^{-1}=I\) to find the \(n\) columns of \(A^{-1}\). The augmented matrix \(\begin{bmatrix} A & I \end{bmatrix}\) is row-reduced to \(\begin{bmatrix} I & A^{-1} \end{bmatrix}\).
三角矩阵(上, 下)只要对角线上存在0, 那么这个矩阵就不可逆.
6.Elimination = Factorization:A=LU
LU分解:
Special pattern \(A =\begin{bmatrix}1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{bmatrix}\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{bmatrix}\).
When a row of A starts with zeros, so does that row of L.
When a column of A starts with zeros, so does that column of U.
\(A=LU\)分解中, 上三角矩阵\(U\)中对角线上的元素对应\(A\)消元后的主元(pivots), 另外\(U\)可以继续分解为:\(U=DU_1\), 对角阵和上三角矩阵乘积.(\(A=LDU\).)
- Gaussian elimination (with no row exchanges) factors \(A\) into \(L \cdot U\).
- The lower triangular \(L\) contains the number \(l_{ij}\) that multiply pivot rows, going from \(A\) to \(U\). The product \(LU\) adds those rows back to recover \(A\).
- On the right side we solve \(Lc=b\) (forward) and \(Ux=c\) (backward).
- Factor: there are \(\frac{1}{3}(n^3-n)\) multiplications and subtractions on the left side.
- solve: There are \(n^2\) multiplications and subtractions on the right side.
- For a band matrix, change \(\frac{1}{3}n^3\) to \(nw^2\) and change \(n^2\) to \(2wn\).
7.Transposes and Permutations
矩阵转置:
Sum \((A + B)^T = A^T + B^T\)
Product \((AB)^T = B^T A^T\)
Inverse \((A^{-1})^T=(A^T)^{-1}\)
- The transpose puts the rows of \(A\) into the columns of \(A^T\). Then \(A^{T}_{ij}=A_{ji}\)
- The transpose of \(AB\) is \(B^T A^T\). \((A^{-1})^{T}=(A^{T})^{-1}\).
- The dot product is \(x \cdot y = x^T y\). Then \((Ax)^T y\) equals the dot product \(x^T(A^T y)\).
- When \(A\) is symmetric (\(A^T=A\)), its \(LDU\) Factorization is symmetic: \(A=LDL^{T}\).
- A permutation matrix \(P\) has a 1 in each row and column, and \(P^T=R^{-1}\).
- There are \(n!\) permutation matrices of size n. Half even, half odd.
- If \(A\) is invertible then a permutation \(P\) will reorder its rows for \(PA=LU\).
@anifacc
2017-05-10
人生苦短, 为欢几何.