线性代数:行列式性质
03 Jun 2017The contents are from chapter 5 section 1 of Introduction to Linear Algebra, Book of Gilbert Strang, edition 4th.
- The properties of determinants
1.Key ideas
- The determinant is defined by \(\det I = 1\), sign reversal, and linearity in each row.
- After elimination \(\det A\) is \(\pm\)(product of the pivots).
- The determinant is zero exactly when A is not invertible.
- Two remarkable properties are \(\det{AB}=(\det A)(\det B)\) and \(\det{A^T}=\det A\).
2.Introduction
The determinant of an n by n matrix can be found in three ways:
- pivot formula: multiply the n pivots(times 1 or -1)
- “big” formula: add up n! terms(times 1 or -1)
- cofactor formula: combine n smaller determinants(times 1 or -1)
Let me show a simple example to get the determinant of matrix A.
\[A=\begin{bmatrix} a & b \\ c & d\end{bmatrix}, \det A = ad - bc, A^{-1} = \frac{1}{detA} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\]The determinant changes sign when tow rows (or two columns) are exchanged.
Row and column are equal.
Applications:
- Determinants give \(A^{-1}\) and \(A^{-1}b\)(this formula is called Cramer’s Rule).
- When the edges of a box are the rows of A, the volume is \(\mid \det A \mid\).
- For n special numbers \(\lambda\), called eigenvalues, the determinants of \(A - \lambda I\) is zero. This is a truly important application and it fills Chapter 6.
3.The properties of the determinant
- \[\det I = 1\]
- The determinant changes sign when two rows are changed(sign reversal).交换行,行列式值符号改变。(列也是一样)
- Key:The determinant is a linear function of each row separately.
- a. \(\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d\end{vmatrix}\)
- b. \(\begin{vmatrix} a+a' & b+b' \\ c & d\end{vmatrix} = \begin{vmatrix} a & b \\ c & d\end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d\end{vmatrix}\)
- If two rows of A are equal, then \(\det A = 0\).(两行相等, 行列式为0)
- Key: Subtracting a multiple of one row from another row leaves \(\det A\) unchanged.
- Using rule 3 + 4 to prove this.
- Example: \(\begin{vmatrix} a & b \\ c-la & d-lb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d\end{vmatrix}\).
- A matrix with a row of zeros has \(\det A = 0\) 一行全为0, 则行列式为0.
- If A is triangular then \(\det A = a_{11}a_{22} \cdots a_{nn} =\) product of diagonal entries.
- ex: \(\begin{vmatrix} a & b \\ 0 & d \end{vmatrix} = ad, \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} = ad\).
- If A is singular then \(\det A = 0\). If A is invertible then \(\det A \neq 0\).
- \(\det{AB} = \det A \det B\).
- ex: \(\begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{vmatrix} p & q \\ r & s \end{vmatrix} = \begin{vmatrix} ap+br & aq+bs \\ cp+dr & cq+ds \end{vmatrix}\).
- \(\det{A^T} = \det A\).
- Prove:
- 分解:\(A=LU\), 其中\(L\)为下三角矩阵, \(U\)为上三角矩阵.
- \[A^T=U^T L^T\]
- \(\mid U^T \mid \mid L \mid = \mid L \mid \mid U \mid\).
注: 1-8 为行列式自身的性质, 知道这些可以推导性质.
@Anifacc
2017-06-03
人生苦短, 为欢几何.