Jeremy Anifacc World Labyrinth 世界迷宫

线性代数:行列式性质

The contents are from chapter 5 section 1 of Introduction to Linear Algebra, Book of Gilbert Strang, edition 4th.

  • The properties of determinants

1.Key ideas

  1. The determinant is defined by \(\det I = 1\), sign reversal, and linearity in each row.
  2. After elimination \(\det A\) is \(\pm\)(product of the pivots).
  3. The determinant is zero exactly when A is not invertible.
  4. Two remarkable properties are \(\det{AB}=(\det A)(\det B)\) and \(\det{A^T}=\det A\).

2.Introduction

The determinant of an n by n matrix can be found in three ways:

  • pivot formula: multiply the n pivots(times 1 or -1)
  • “big” formula: add up n! terms(times 1 or -1)
  • cofactor formula: combine n smaller determinants(times 1 or -1)

Let me show a simple example to get the determinant of matrix A.

\[A=\begin{bmatrix} a & b \\ c & d\end{bmatrix}, \det A = ad - bc, A^{-1} = \frac{1}{detA} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\]

The determinant changes sign when tow rows (or two columns) are exchanged.

Row and column are equal.

Applications:

  1. Determinants give \(A^{-1}\) and \(A^{-1}b\)(this formula is called Cramer’s Rule).
  2. When the edges of a box are the rows of A, the volume is \(\mid \det A \mid\).
  3. For n special numbers \(\lambda\), called eigenvalues, the determinants of \(A - \lambda I\) is zero. This is a truly important application and it fills Chapter 6.

3.The properties of the determinant

  1. \[\det I = 1\]
  2. The determinant changes sign when two rows are changed(sign reversal).交换行,行列式值符号改变。(列也是一样)
  3. Key:The determinant is a linear function of each row separately.
    • a. \(\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d\end{vmatrix}\)
    • b. \(\begin{vmatrix} a+a' & b+b' \\ c & d\end{vmatrix} = \begin{vmatrix} a & b \\ c & d\end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d\end{vmatrix}\)
  4. If two rows of A are equal, then \(\det A = 0\).(两行相等, 行列式为0)
  5. Key: Subtracting a multiple of one row from another row leaves \(\det A\) unchanged.
    • Using rule 3 + 4 to prove this.
    • Example: \(\begin{vmatrix} a & b \\ c-la & d-lb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d\end{vmatrix}\).
  6. A matrix with a row of zeros has \(\det A = 0\) 一行全为0, 则行列式为0.
  7. If A is triangular then \(\det A = a_{11}a_{22} \cdots a_{nn} =\) product of diagonal entries.
    • ex: \(\begin{vmatrix} a & b \\ 0 & d \end{vmatrix} = ad, \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} = ad\).
  8. If A is singular then \(\det A = 0\). If A is invertible then \(\det A \neq 0\).
  9. \(\det{AB} = \det A \det B\).
    • ex: \(\begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{vmatrix} p & q \\ r & s \end{vmatrix} = \begin{vmatrix} ap+br & aq+bs \\ cp+dr & cq+ds \end{vmatrix}\).
  10. \(\det{A^T} = \det A\).
    • Prove:
    • 分解:\(A=LU\), 其中\(L\)为下三角矩阵, \(U\)为上三角矩阵.
    • \[A^T=U^T L^T\]
    • \(\mid U^T \mid \mid L \mid = \mid L \mid \mid U \mid\).

注: 1-8 为行列式自身的性质, 知道这些可以推导性质.


@Anifacc
2017-06-03

Glider

人生苦短, 为欢几何.

CCBY-NC-SA
如果喜欢, 请 Jeremy 喝杯咖啡
用微信请Jeremy Anifacc吃颗糖?

微信

用支付宝请Jeremy Anifacc吃颗糖?

支付宝